

Rane (Madras) Limited – Brake Components Division P4-Trichy

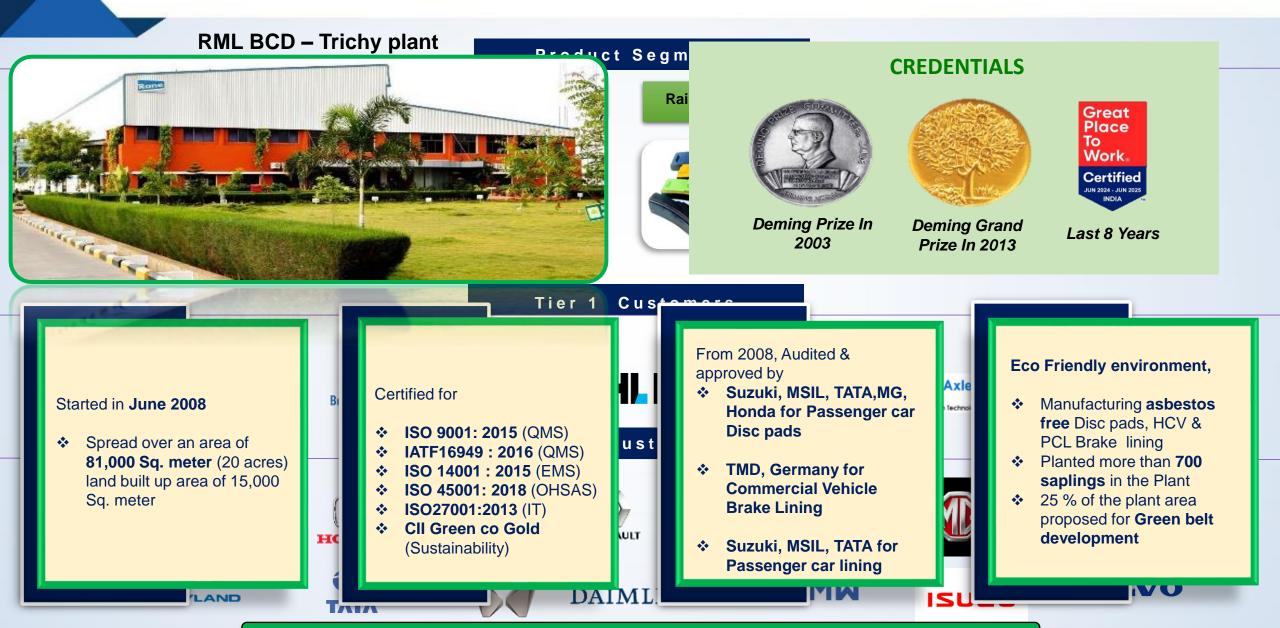
CII NATIONAL AWARD FOR ENVIRONMENTAL BEST PRACTICE - 2025

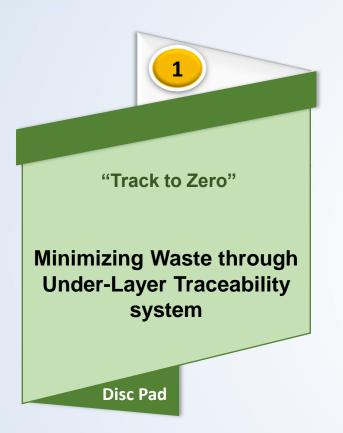
Category: Waste Management & Recycling

Sankar Prasath D

EHS & Sustainability

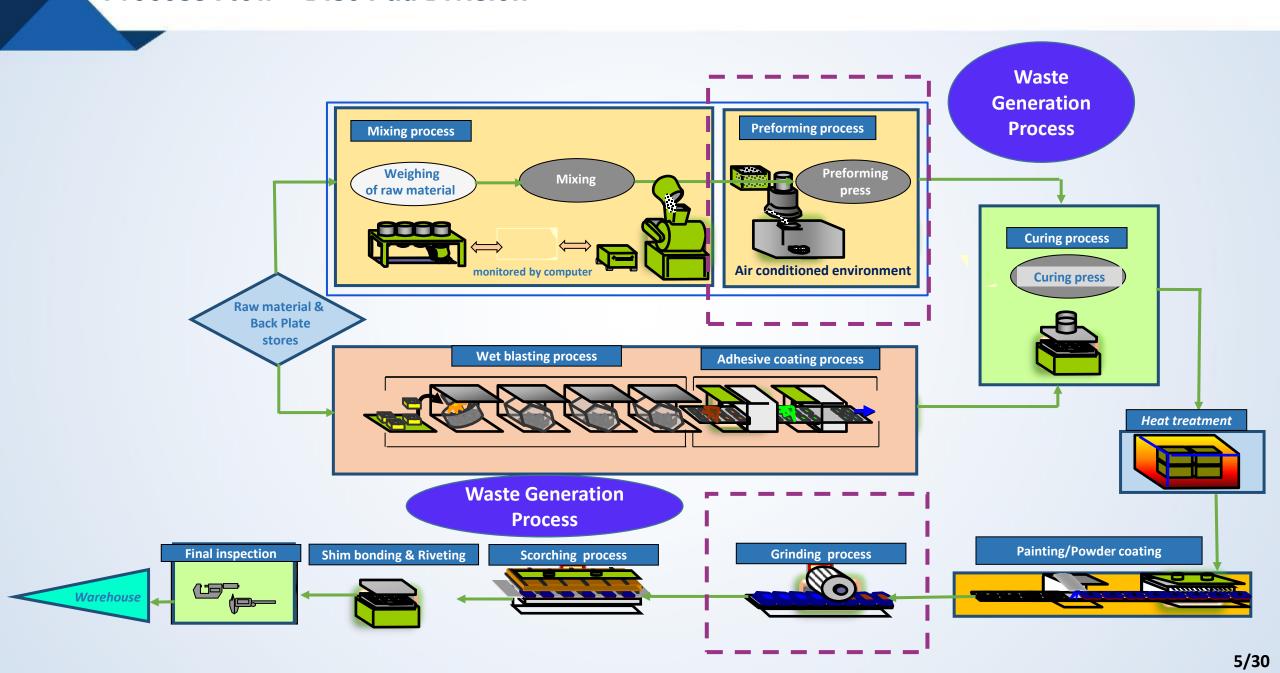
Harishkumar S

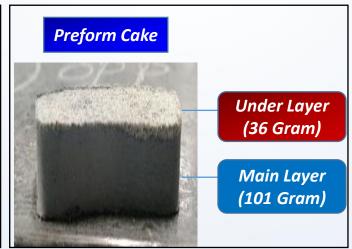

Manufacturing


RML BCD Milestones towards Sustainability

RML BCD - Trichy plant profile

Projects Identified to reduce waste & recycling





Process Flow – Disc Pad Division

- Raw Material Preparation: Friction raw materials are blended through a controlled mixing process to ensure uniform composition.
- Preform Composition: The preform mix consists of two critical elements Main Mix: Functions as the friction-generating material in the disc pad. Under Layer Mix: Acts as a bonding layer, firmly bonding the friction material to the back plate.
- ❖ Preform Formation: Both main mix and under layer mix are compacted into a defined preform cake shape using a precision-controlled hydraulic press.

Main Mix Under layer Mix

List of Main Mix & UL mix:

S.No.	Main mix grade	UL mix grade		
1	RD6934H2			
2	RD6934H2 (S)			
3	RD6934H2(M)	T KD2U		
4	R5102L(M)			
5	SA02A			
6	SA02B	RB23		
7	RD6768H-T14			
8	RL6755-DP23H R5102L(A)			
9	R5102L(A)	RB23(A)		
10	RN609H			
11	R5102L(M2)			
12	RD6981H	RB32		
13	R5102L	T KD32		
14	RD6920H2			
15	R808T(A) - 85 / R8170			
16	R9001	DD40		
17	R809	RB40		
18	R5104			
19	R9405H			
20	RL6320A1	RU12		
21	R812M	UL4		
22	R9303H	UL 04 - 03		

22 Main mix and 8 Under layer

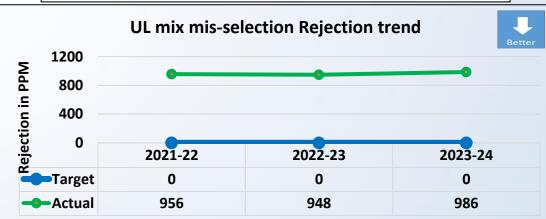
Trigger:

- To ensure accuracy and traceability, the main mix storage bins are equipped with RFID devices, which are fully synchronized with the QT (Quality Traceability) system on the machines.
- This integration enables real-time verification and guides operators in selecting the correct main mix for the specific machine and application, thereby minimizing the risk of mix-ups.

Uniqueness of the project:

New application - Quality traceability implemented for Underlayer mix for the first time (among 4 plants) – In-house development

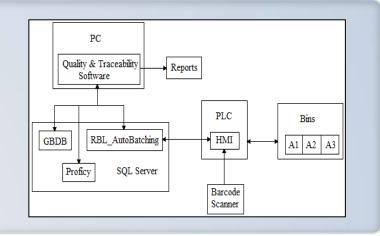

Project period:


Start month: Apr'24

End month: Sep'24

Milestone:

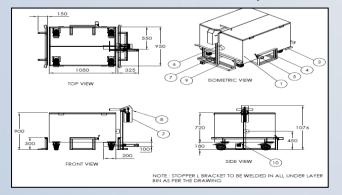
Nisshinbo, Japan team appreciated & benchmarked in Oct'24

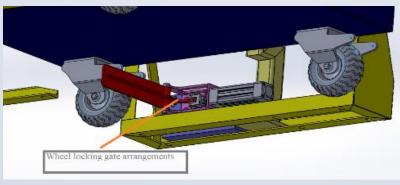


963 PPM on average, 1.48 Mton Waste on average

Action:

System & Software Development:


- ✓ Extended existing Poka-Yoke (error-proofing) mechanisms from main mix to under layer mix for consistent process validation.
- ✓ Lot tracking module ensures that only the correct under layer mix, matching the batch and machine specification, is released.

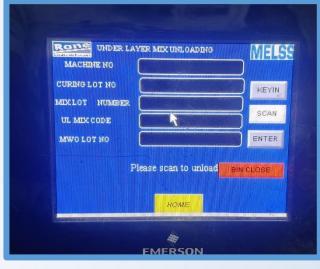


Challenges:

❖ Bin locking drawing:

- ✓ Physical lock system installed on material bins to prevent access to incorrect mixes.
- ✓ Locks are electronically controlled and linked with the traceability software.

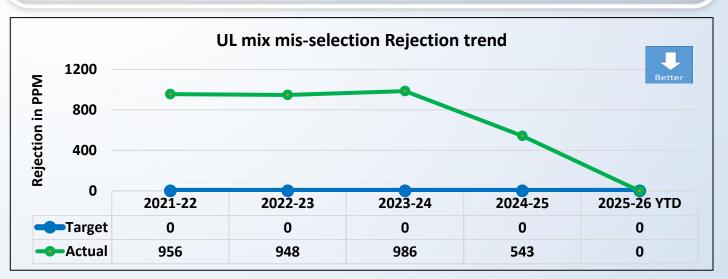
Double Scanning :


✓ To avoid wrong usage of UL mix trays

Action:

- Each under layer mix bin is equipped with a physical electronic lock.
- Operator scans the designated 1D barcode for the specific lot.
- ✓ The system cross-checks the machine ID with the batch details.
- Operator scans the process card containing job and part details.
- ✓ Software automatically checks if the part number matches the process and mix.
- Critical details such as lot number, time stamp, machine no., and bin status are logged.
- ✓ Once all validations are passed, the system unlocks the mix bin

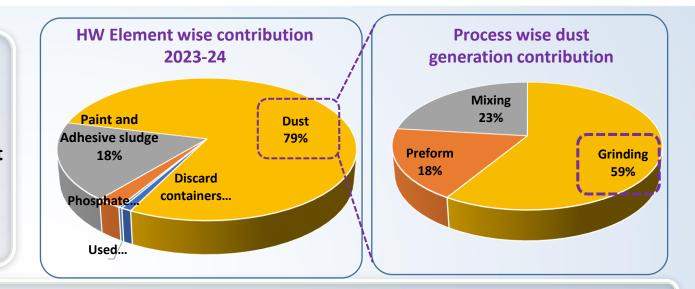
Tangible benefits:


- **❖ 17.48 Mton/annum Wastage** generation eliminated
- **UL mix mis-selection** Rejection 963 PPM eliminated
- Cost Savings INR 73.3L/annum (RM, Disposal,
 Operational cost)
- ❖ OEE improved from 78% to 81% (By improving Quality rate from 98.2% to 99.1%

Intangible benefits:

- **Deskilled** the activity Selection of UL mix
- ❖ Team got motivated & involved in other phenomenon elimination activities
- **❖** Team morale improved
- ❖ Due to Material Saving, Mining process reduced to extract RM
- Carbon emission reduction, Energy Saving by reducing transport & process

Replication:


Locations	Material Saving/annum (MT)	Cost Savings (Lakhs/annum)		
Chennai Plant	10.7	48.3		
Hyderabad plant	12.6	52.4		
Puducherry plant	Implementation in progress			

Project - 2 "Precision Engineering for Sustainability" – Innovative Reduction of Grinding Dust

Trigger of the Project:

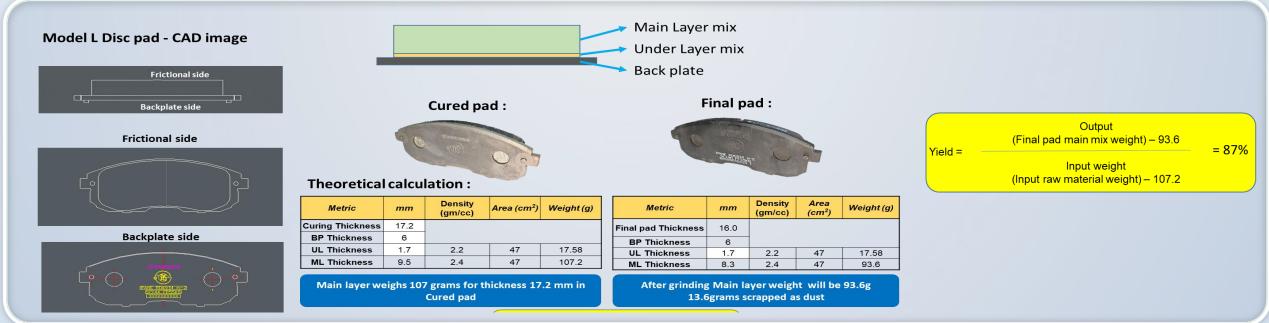
- ❖ Hazardous waste generation is high 282 MT in 2023-24
- ❖ In Hazardous waste (HW) generation elements, Dust generation contribution is high 222.7 MT (79%)
- So, Management focused on Dust generation reduction.

Uniqueness of the project:

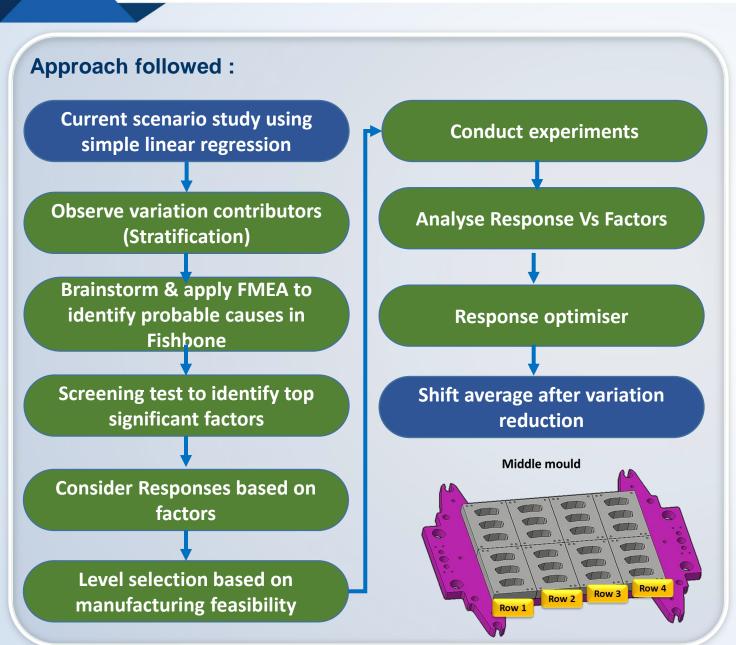
❖ Raw material utilization through Machine / Mould parameter optimization through DMAIC - LSS (Define, Measure, Analyse, Improve & Control) approach

Project period:

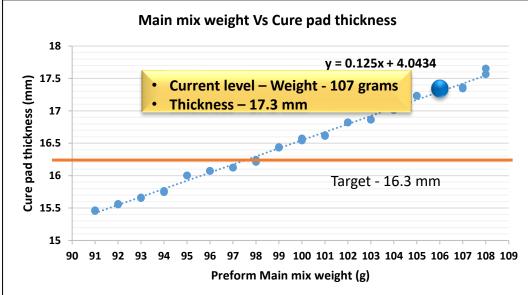
- ❖ Start month : May'24
- ❖ End month: Oct'24

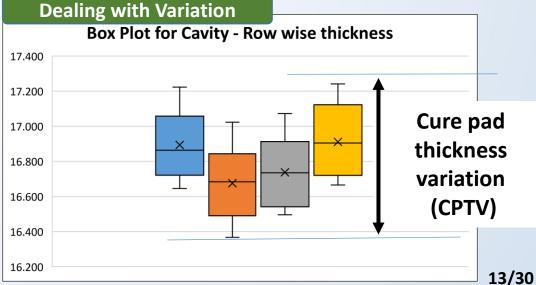

Milestone:

- ❖ Sustainability Integration: Yield saving linked with reduced solid waste disposal & improved ecocompliance.
- Unique approach designed for yield improvement that are suitable for all product segments & followed during New product development stage


Project - 2 "Precision Engineering for Sustainability" – Innovative Reduction of Grinding Dust

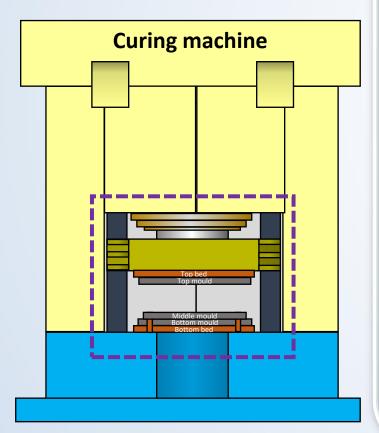
Understanding Preform weight, Cure pad thickness & Grinding pad thickness:

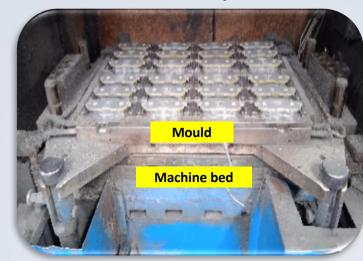




Project - 2 "Precision Engineering for Sustainability"—Innovative Reduction of Grinding Dust

Dealing with Average




Project - 2 "Precision Engineering for Sustainability"— Innovative Reduction of Grinding Dust

Significant factors:

- **❖** Bed parallelism
- Middle mould flatness
- Punch height variation

Machine & Mould setup

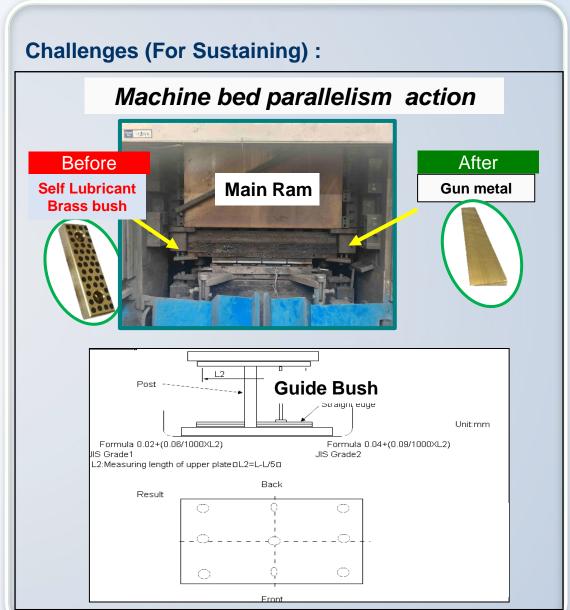
1) Bed parallelism

Spec: 0.3 mm max

2) Middle mould flatness

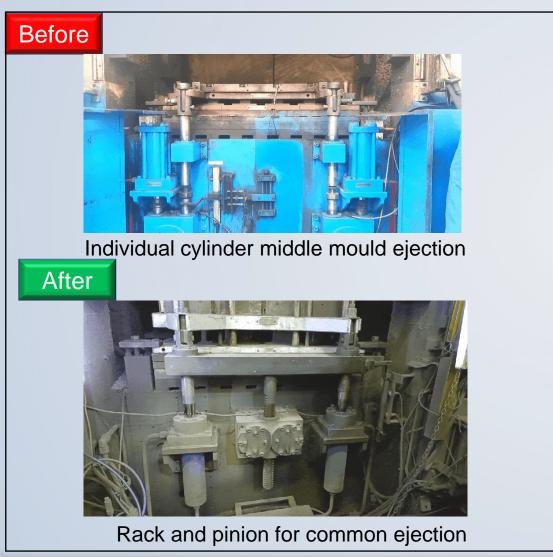
Spec: 0.3 mm max

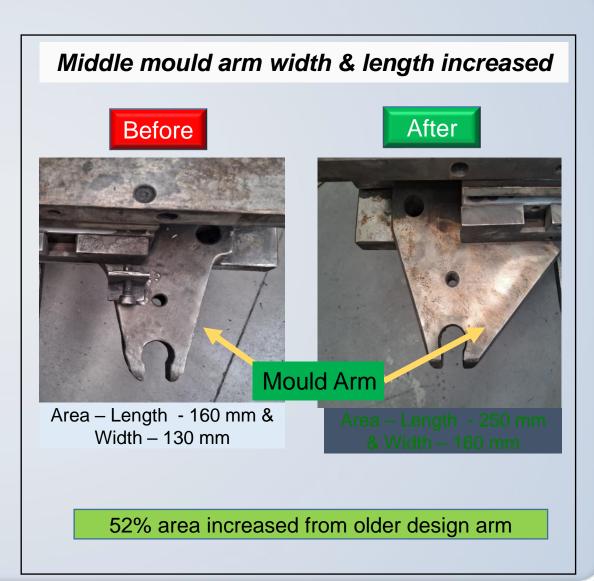
3) Punch height variation

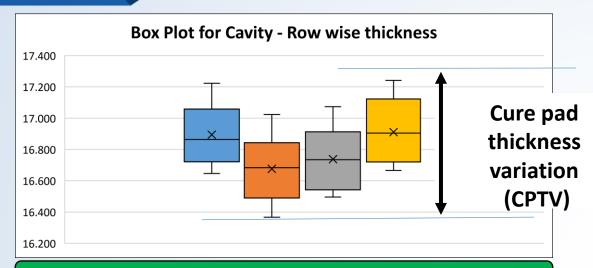


Spec: 0.2 mm max

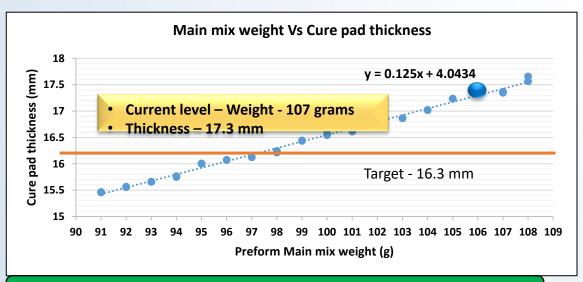
Project - 2 "Precision Engineering for Sustainability" – Innovative Reduction of Grinding Dust


Results after Experiments & Response optimizer :


SI. No		What		How		
	Parameter	From	То	ПОМ		
1	Bed parallelism	0.20 mm	0.10 mm	Pillar bush material changed to Gun metal (from self lubricant brass).		
1 ツー	Mould middle plate flatness	0.30 mm	0.10 mm	Mould middle plate flatness corrected by regrinding.		
				2. Plate arm length and width increased by 52% to avoid bend		
				3. Machine ejection system modified (connecting rod to rack & pinion)		
3	Punch height variation (assembled condition)	0.15mm	0.08mm	Bottom mould & wear plate regrinding		
				2. Interlock made for number of cycle for periodic regrinding (50000 cycles – Once in six months)		


Project - 2 "Precision Engineering for Sustainability" – Innovative Reduction of Grinding Dust

Challenges (For Sustaining):



Project - 2 "Precision Engineering for Sustainability"— Innovative Reduction of Grinding Dust

Variation reduced from 0.673mm to 0.293mm

Weight reduced from 107 grams to 98 grams

Replications within PCDP module:

S.No	Model	Before weight (Grams)	Current weight (Grams)	RM saving (Grams)	Grade
1	Model L	107	98	9	RD6934H2
2	Model L OES	107	98	9	RD6934H2
3	YNC Pin	76	73	3	SA02B
4	YNC plain	76	73	3	SA02B
5	YJC Pin	78	75	3	RD6768H
6	YJC plain	78	75	3	RD6768H
7	Z101 rear Inboard	90	84	6	R8070i
8	Z101 rear Outbord	90	84	6	R8070i
9	Aria 3 Pin	176	169	7	R808T
10	Aria 2 Pin	176	169	7	R808T
11	X2 front 3 Pin	176	169	7	R808T
12	X2 front 3 Pin	176	169	7	R808T
13	Xenon Inboard	176	169	7	R808T
14	Xenon Outboard	176	169	7	R808T
15	YCA inboard	76	73	3	RD6768H
16	YCA outboard	76	73	3	RD6768H
17	P602 Inboard	84	78	6	R809
18	P602 Outboard	84	78	6	R809
19	Y9T HITACHI	72	71	1	RD6768H
20	ALDOST	105	103	2	R808T

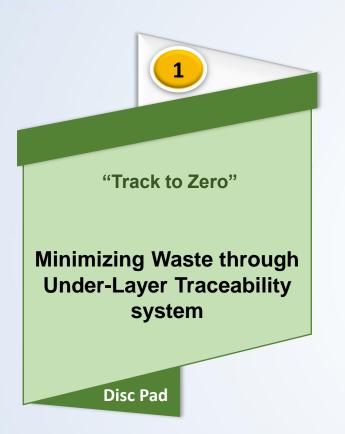
67 MT of Raw material saved

Project - 2 "Precision Engineering for Sustainability" – Innovative Reduction of Grinding Dust

Tangible benefits:

- **❖ 67 MT/annum Wastage** generation eliminated
- Cost Savings INR 78 Lakhs/annum (RM, Disposal, Operational cost)

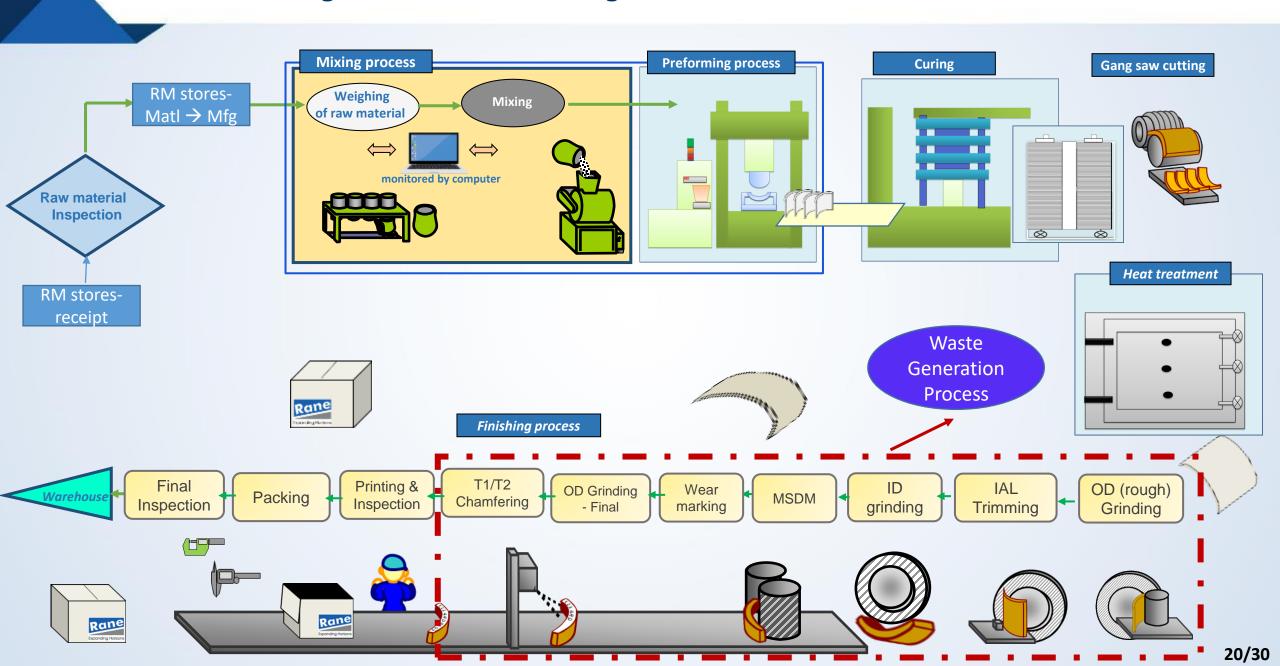
Intangible benefits:


- ❖ Team got motivated & involved in other module (CVBL & PCBL) parts
- ❖ Material Saving, Mining process reduced to extract RM
- Carbon emission reduction, Energy Saving by reducing transport & process

Replication:

Locations	Material Saving/annum (MT)	Cost Savings (Lakhs/annum)		
Chennai Plant	56	64		
Hyderabad plant	44	52		
Puducherry plant	48	16		

Projects Identified to reduce waste & recycling



Process Flow Diagram – CV Brake Lining

Trigger:

- Increase in Dust with Production Growth
 - As production volume ramps up, the amount of friction dust generated also increases. This creates additional challenges in managing and disposing of the waste.
- Strict Regulations on Disposal Government and environmental agencies have strict rules for handling and disposing of solid waste like friction dust. Non-compliance can lead to penalties or legal issues.
- High Disposal Costs
 Disposing of friction dust in a safe and compliant way is very costly.

Uniqueness of the project:

* Re-use of ground dust in formulation: First-of-its-kind approach to convert grinding dust waste into performance-grade friction material without compromising regulatory standards.

Project period:

- ❖ Start month : Sep'23
- ❖ End month : Aug'24

Milestone:

- ❖ Sustainable Manufacturing: Achieved validated brake performance with dust-based formulation, ensuring cost saving, waste reduction, and eco-compliance.
- * RAF 7 grade approved in US market.

Analysis:

Brake Lining Manufacturing Process:

- Our brake lining products are manufactured using 8 raw materials in specific proportions:
 - ❖ RB 412 9%, RB 152 23%, RB 123 16%, RB 132
 K 12%, RB 116 29%, RB 04 3%, SP-619 4%,
 RB 140 4%
- These raw materials are mixed together to form a preform mix.
- The preform mix is then converted into preforms and cured.
- After curing, the brake linings go through a grinding process to achieve precise specifications.
- During grinding, a large amount of dust waste is generated, which is usually collected and disposed of through co-processing.

RM collection &
Mixing

Cured Lining

Preform Mix

Before finishing

Preform

After finishing

Innovation – Cost Effective Formulation

Formulation Development

- ➤ 3R concept (Reduce/Re-cycle/Re-use) adopted innovatively to develop cost effective formulation.
- Re-use of ground dust in formulation maximized to achieve desired cost benefit.

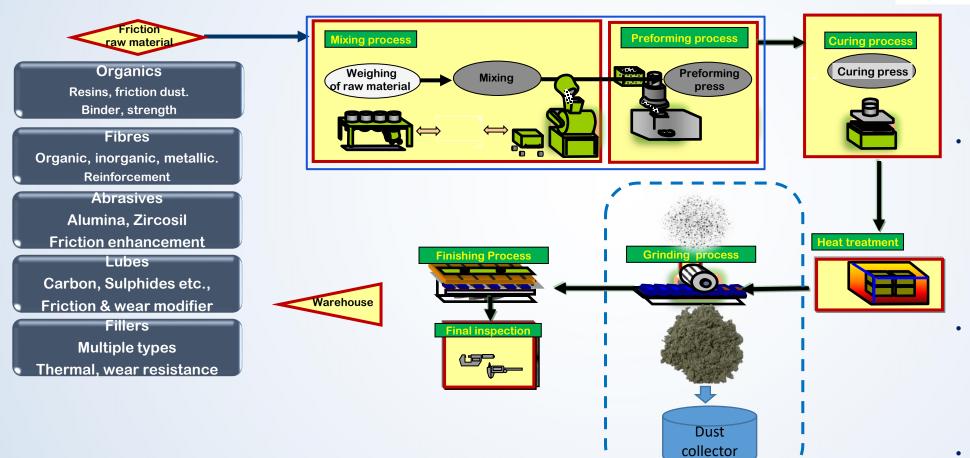
Advantages

- Rich source of raw material having friction characteristics
- Considered as 'Functional Filler'
- Eliminate waste disposal → Reducing Air / Water / Land pollution
- Conserves Raw materials → Saving money

Challenges

- Inconsistency due to multiple grade's dust & very high dosage effect
- Handling issue Fly loss & poor compactness in Preforming
- Variation in Performance Poor braking efficiency, low life

Innovation


- To reduce variability, Ground dust from single grade evaluated & best option used in the formulation
- Exclusive facility established to collect & store dust from single grade in bulk quantity
- New raw material code created for single grade dust and material spec standardized
- Special process was developed to avoid handling issue

Cost effective new grade developed innovatively by formulation design with high dosage of ground dust

Environment Friendly

Formulation Development

- Ground dust (GD) are fine
 particles of friction materials it
 has all functional materials like
 abrasive, lube etc., which are
 used in the formulation.
- Current GD levels being re-used to a very limited extent in formulation
- Remaining dust are treated and disposed off in approved land-



Confidential

Certification (External USA)

SAE J2975 – Copper Content & NSF Registration

The Public Health and Safety Organization, USA OFFICIAL LISTING

NSF International has registered the products appearing on this Listing and the product manufacturers have self-certified that these products conform to the requirements of SAE J2975.

		Unique Identification	Compliance	OESC					
Manufacturer Name	Manufacturer ID	Code	Level	Exemption	Vehicle Make	Model	Model Years	Expiration Date	Self-Certification
Rane Brake Lining Limited	181	RAF 200i GG	N	-	-	-	-	02/13/2026	C0604403-00001

Confidential

Tangible benefits:

- ❖ Waste-to-Value Conversion: 35 Lakhs / annum
- Reduced Waste Disposal Cost: 8 Lakhs/Annum

Intangible benefits:

- * Regulatory Compliance: Meets stricter environmental norms on dust and waste management.
- ❖ Green supply chain: Strengthens trust among OEMs looking for green supply chains.
- ❖ Developed circular economy practices in friction materials.

