

PFEDA SYNTHETICS PVT. LTD. WELCOME

Confederation of Indian Industry (CII).

Innovation Project -01 (Recycling of Scraped PU with Supplier (Rymbal')

Trigger of the Project: ~5% PU Waste,(24 Ton Annually=48 Lakhs).

Uniqueness: Reutilizing PU waste through chemical recycling into reusable polyols.

COMPANY PROFILE

PFEDA Synthetics Pvt. Ltd.

- Pfeda Synthetics Pvt. Ltd was incorporated in 1983.
- Production started in 1985.
- The company has a strong customer base in the automotive &

Non-Automotive field.

- It primarily serves the Truck and Earth Moving segments.
- Pfeda has remained a "Preferred Supplier" to top brands in the industry.
- This status is due to its:
 - Consistent performance
 - Strong quality consciousness.

Our Units

Unit-01:-W-7, W Block, Sector 11, Noida, Uttar Pradesh 201301

Unit-02:- W-15/16, W Block, Sector 11, Noida, Uttar Pradesh 201301

Unit-03:- C-6,7 & 8, EPIP Kasna, Surajpur Industrial Area, Site-V, Greater Noida - 201 306

Our Products

Our Certification's

ZED GOLD CERTIFICATE :- 24 May 2025

IATF 16949:2016:- 10.02.2024~ 09.02.2027

ISO 14001:2015:- 10 .08.2024~ 09.08.2027

ISO 45001:2018:- 19.07.2023~ 18.07.2026

GREENCO CERTIFICATE: - 16 Aug 2028

CII - Sohrabji Godrej Green Business Centre

hereby certifies that

PFEDA SYNTHETICS PRIVATE LIMITED, GREATER NOIDA

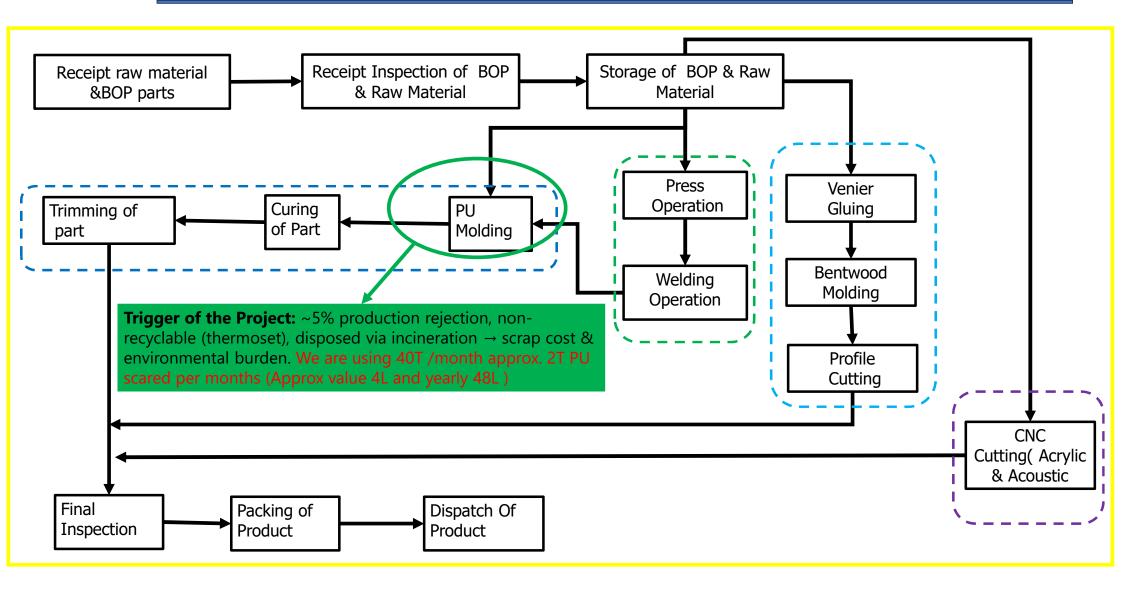
has successfully achieved the standards as required for the following level of certification under the GreenCo - Green Company Rating System which is valid for a period of 3 years

GreenCo Silver

Issue Date: 17-08-2025

Expiry Date: 16-08-2028

Lynn


Jamshyd N Godrej Chairman CII-Godrej GBC

Pradeep Bhargava Chairman GreenCo Rating System K S Venkatagiri Executive Director CII-Godrej GBC

Process Map

Project Overview: Recycling of Scraped PU with Supplier (Rymbal)

Project Title: Recycling of Polyurethane Waste

Trigger of the Project: ~5% production rejection, non-recyclable (thermoset), disposed via incineration → scrap cost & environmental burden. We are using 40T /month approx. 2T PU scared per months (Approx value 4L and yearly 48L)

Uniqueness: Reutilizing PU waste through chemical recycling into reusable polyols.

Timeline: Commencement – Jan 2025 | Completion – Mar 2026

Roadmap & Milestones:

Jan 2025 – Kick-off

Mar 2025 – Initial lab trials

Aug 2025 – Pilot trials & validation

Dec 2025 – Commercial trials

Mar 2026 – Full implementation

Tangible Benefits

- Cost Savings: ~40T PU used monthly → ~2T recycled PU reused per month (≈ 4L/month, 48L/year).
- Significant Environmental Gains: Overall benefit ranges 9% to 23% across key sustainability categories.
- **Solution Global Warming Potential:** ~12% lower CO₂ emissions vs. conventional PU. That's about 76.8 tonnes of CO₂ eq. saved annually.
- Ozone Depletion: Reduced by 23.3%, the highest impact improvement.
- Resource Efficiency: Reduced fossil oil usage (-10%) and water consumption (-12%).
- Broad Sustainability Impact: Recycled PU shows measurable reduction across all LCA parameters (energy, emissions, land use, toxicity).

Intangible Benefits

- 1. People & Society \rightarrow Less landfill & incineration; 4. Culture Shift \rightarrow Embeds circular economy healthier environment & communities.
- **2. Employee Morale** → Pride in sustainability; fosters innovation & responsibility.
- 3. Skill Development \rightarrow Hands-on with recycling tech; boosts R&D & operations capability.

- mindset; long-term green practices.
- **5. Industry Reputation** → Positions brand as a sustainability leader; builds stakeholder trust.
- **6. ESG Alignment** → Supports Net Zero & ESG goals; enhances investor confidence.

Implementation Status & Replication Potential

Before

O) HETCH HETCH CO

Before / After: Before → 5% PU waste → incineration → high cost & emissions.

After → Chemically recycled into reusable polyols → cost saving + sustainability.

Replication Potential:

Within Group: Technology adopted across plants, cross-functional teams.

Within Sector: Scalable model for footwear, seating, and foam industries.

Implementation Status & Replication Potential

Plan for Further Scale-up:

Year 1: Expand recycled PU use to **10–15%** of total production.

Year 2: Integrate **20–30% recycled polyols** into multiple PU applications.

Train next-level teams for **succession planning** and smooth adoption.

Replication Potential (Beyond Group):

Furniture Industry – Use in flexible foams, cushions, and mattresses.

Footwear Industry – Footwear Soles formulations with recycled polyols.

Automotive Industry – Seating foams, headrests, and NVH components.

Potential to set **new industry standards** in sustainable PU applications.

Dissemination:

Internal workshops, technical bulletins, and staff training.

Showcase project at **CII forums, sustainability conferences, and industry associations**.

Publish success stories to promote wider adoption across the PU value chain.

Challenges in Implementation

Technical:

- •High viscosity → pump & flow issues.
- Requires heating/stirring modifications.

Administrative:

- •Segregation of PU waste → added cost.
- •Logistics challenge: blown material has ~3 × volume coverage.

Maintenance:

•Pump blockages & wear due to viscosity.

Frequent preventive maintenance required.

Benchmarks & Comparisons

The Polyurethane Company

Non –Recycled Report

	Dumbbell Specification	on	Dumbbell	Datio	Date
Size	Dim. (In mm)	Dim. (In cm)	Dumbben	Dumbbell Ratio	
Length	60	6	ISO		111
Width	26	2.6	Poly		18.04.2025
Thickness	3	0.3	RATIO		500000000000000000000000000000000000000
Area	Width X Thickness	0.78			
I washing Brooking	and the first Man	Tensil	e Strength	The section flow control	8 - W - 2 1 1 - 1 - 1 - 2
Load at Break p	oad at Break point (in Kg) =			Tensile Specification = 2.1Kg/cn	
Tensile Strengtl	h =	Force /Area		Result	Oic
T.S =		31.54	kg/cm ²	41:	
		Elonagati	on test Report		
Length at Break point =		142.5	mm	Elongation Spe	cification = Min. 1109
Elongation % =		Length at break point / Dumbbell Length		Result	Ok
Elongation % =		237.50			

Recycled Report

	Dumbbell Specification	on	Dumbbell	Datie	Date
Size	Dim. (In mm)	Dim. (In cm)	Dunibben	Dunibben Katio	
Length	60	6	ISO		
Width	26	2.6	Poly		18.04.2025
Thickness	3	0.3	RATIO		production service
Area	Width X Thickness	0.78			
Y 110 DAS 110 CO	- 90° 000-40	Tensil	e Strength	At the constant and	
Load at Break point (in Kg) =		23.1		Tensile Specification = 2.1Kg/cm	
Tensile Strength =		Force /Area		Result	Ok
T.S =		29.62	kg/cm²		
		Elonagatio	on test Report	3	
Length at Break point =		126.7	mm	Elongation Spec	rification = Min. 1109
Elongation % =		Length at break point / Dumbbell Length		Result	Ok
Elongation % =		211.17	- 1		

Flat Armrest Parts

Fender Parts

Floor Mate Parts

PU Molding / Automotive Parts

Benchmarks & Comparisons

Property	Benchmark Specs	Recycled Product	Non-Recycled Product
Tensile Strength (kg/cm²)	≥ 2.1	29.6	31.5
Elongation (%)	≥ 110	211.2	237.5

Key Takeaways:

- Both recycled and Non recycled product **exceed benchmark specifications** in tensile strength and elongation.
- Elongation values are ~2× higher than required, showing superior flexibility.
- Confirms technical feasibility of using recycled PU without compromising quality.
- Strong evidence to support scaling up for industrial adoption.

Priority Plans (+1 year / +2 years)

1. Performance Evaluation

Set KPIs: strength, elongation, viscosity, efficiency Track commercial vs. lab results Annual performance reporting

2. Scaling Up

- +1 Year: 10–15% recycled PU in production
- **+2 Years:** 20–30% in footwear, seating, foams
- Partner with supply chain for adoption

3. Training & Education

- Workshops for operators, QC, R&D
- Develop SOPs & technical manuals
- Share learnings at forums & with partners

4. Continuous Improvement

- Optimize formulations for viscosity & pumpability
- Improve segregation & collection systems
- Explore additives for performance boost

5. Resource Requirement

- Invest in pumps, heating/stirring, storage
- Dedicated R&D + production teams
- Budget for logistics & maintenance

Top 10 Best Practices adopted during project implementation phase

- Segregation at Source Dedicated PU waste separation.
- **2.** Closed-Loop Collection Efficient scrap return logistics.
- **3. Viscosity Management** Pre-heating & stirring for smooth flow.
- **4. Pump Maintenance** Preventive checks to reduce downtime.
- **5. Formulation Optimization** Balance viscosity & product quality.
- **6. Performance Benchmarking** Regular tensile/elongation testing.

- **7. Training & Awareness** Operator & R&D capacity building.
- **8.** Cross-Functional Collaboration Production + R&D + Sustainability teamwork.
- 9. Cost-Benefit Tracking CO₂, waste reduction & ROI analysis.
- **10. Knowledge Sharing** Forums, publications, industry outreach.
- **11. Standardization** Maintain 4M During the Change.

Major Key learnings from the project outcome

1. Recycling is Viable

Recycled polyols can be reused in PU formulations without compromising quality.

- 2. Sustainability Creates Business Value
 Recycling cuts scrap costs (48 lakhs in annual savings), lowers emissions, and boosts ROI & credibility.
- 3. Performance Surpasses Benchmarks
 Chemically recycled PU showed higher tensile
 strength & elongation than standards.

- 4. Process Reliability Needs Discipline
 Consistency depends on strict waste
 segregation & preventive maintenance.
- 5. Viscosity is the Bottleneck
 High viscosity requires heating, stirring, and pump modifications..
- 6.Collaboration Accelerates Change
 Success achieved through R&D, Production,
 Sustainability & Logistics teamwork.

