

PEPSICO INDIA HOLDINGS PVT. LTD. (Fritolay Division) Channo, Punjab.

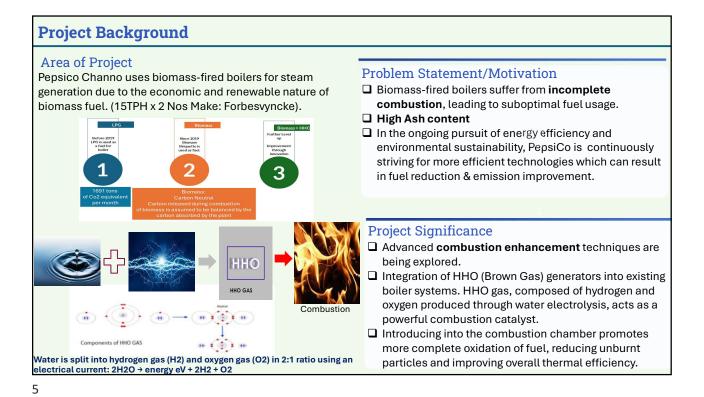
1

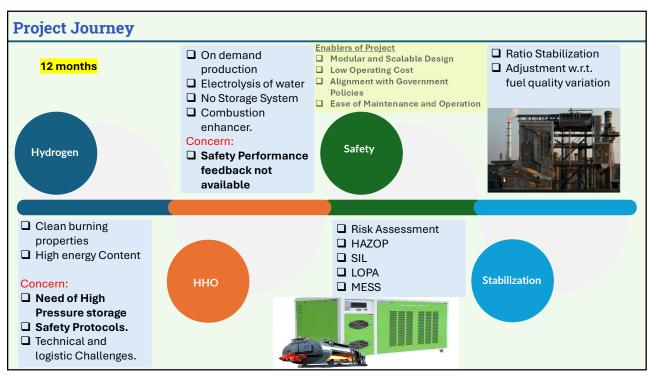
Company Profile

Pep+ aims to invest in building a stronger and more resilient business, and we are focused on three interconnected pillars with ambitious goals.

- Entered India in 1989
- One of the largest food and beverage businesses in India.
- Diverse portfolio / iconic brands like
 Pepsi, Lay's, Kurkure, Tropicana, Gatorade and
 Quaker.
- Over the last three decades, supported 118,000 people and developed a strong backend link with over 27,000 farmers across 14 states in the country.

Positive Agriculture We are working to source our crops and


We are working to source our crops and ingredients in ways that restore the earth and strengthen farming communities.



Project Overview: Boiler Fuel Efficiency Improvement and Emission Reduction Project Details Implementation of HHO (Brown Gas) generator for fuel efficiency and carbon emission reduction in biomass boiler. (HHO Generator Integration with Biomass-Fired Boiler System) Objective The HHO (Brown gas) functions as a combustion catalyst, enhancing the oxidation of unburnt fuel particles within the boiler chamber. Key Benefits Improved Combustion efficiency: 10% reduction in biomass fuel consumption. Reduction in Emission: Contributing to environmental sustainability. This initiative directly supports the organization's commitment to energy optimization, emissions reduction, and compliance with sustainability and environmental regulations.

Replication Potential

Replication within the same sector

Widespread use in **Biomass boiler**

Extensively used in industries such as agroprocessing, textiles, food & beverage, paper & pulp, and sugar mills.

Ease of Integration

The HHO generator is designed for simple retrofitting onto existing boiler systems, requiring minimal modifications. This allows seamless adoption.

Attractive Payback period

With an estimated 10% reduction in fuel consumption, the system offers a short payback period, making it a costeffective and economically viable solution.

Support for Environmental compliance

The improved combustion efficiency leads to a reduction in PM and CO emissions, aiding industries in achieving compliance with pollution board.

Implementation in other industrial Sector

Fossil Fuel Boilers (Coal, LDO, FO, PNG, etc.)

The technology can be adapted to improve combustion

Thermal Oil Heaters & Hot **Air Generators**

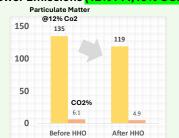
In sectors where precise thermal control is essential, HHO integration can enhance combustion efficiency without redesigning the system.

Kilns and Furnaces (Steel, Ceramics, Brick Industries)

High-temperature industrial processes that require consistent heat can benefit from improved combustion efficiency.

Diesel or Petrol Engines (Backup Generators, Vehicles)

Though not the core focus, HHO generators have been used in internal combustion engines to improve fuel economy.


Tangible Benefits

Improved Combustion Efficiency (9%)**Combustion Efficiency** 85 80 75 70 Before HHO After HHO

Increase in Steam Fuel Ratio

Lower Emissions (12% PM,19% CO2) Particulate Matte

Colour change from Ash Reductions (2%) **Regulatory Compliance & Environmental Certification Support Ash Quantity**

- 16% 15% 15% 14% 13% 13% Before HHO After HHO
- ☐ **Reduction** in particulate matter and CO emissions, supporting compliance with Central and State
- Pollution Control Board standards. Supports ongoing efforts toward ISO 14001:2015 certification. (Pollution prevention and continual environmental improvement)

Contribution to Sustainability Goals

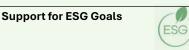
☐ Contribution to India's Nationally Determined Contributions (NDCs): Reduced emissions and improved combustion efficiency, the project contributes to India's climate commitments under the Paris Agreement, supporting low-carbon and sustainable industrial growth.

Intangible Benefits

Enhanced Environmental Responsibility & Corporate Image

Innovation Culture and Technological Leadership

Increased Stakeholder Confidence


- Showcases a proactive approach to reducing carbon emissions and particulate pollution, directly contributing to cleaner air and climate action.
- First-of-its-kind application in biomass boilers sets the organization apart as an early mover in industrial clean tech innovation.
- Demonstrates proactive efforts towards compliance and sustainability, strengthening trust with regulators and investors.

Future Readiness & Strategic Positioning

☐ Supports national sustainability

Community & Industry Recognition

- Anticipates stricter environmental norms by investing in low-emission, high-efficiency combustion solutions.
- ☐ The modular design allows to be scaled across facilities and fuel types (biomass, coal, FO, etc.).

Community a maded y necessitation

☐ Lower local air pollution due to reduced emissions fosters goodwill in surrounding communities and enhances the company's social license to operate.

☐ Aligns with global ESG (Environmental, Social, Governance) goals, appealing to environmentally-conscious clients and partners.

9

Uniqueness of the Project

1

First-of-its-Kind Integration with Biomass Boiler

While HHO (Brown

Gas) technology has seen applications in internal combustion engines, its use as a combustion catalyst in industrial biomass boilers is a pioneering innovation. This marks a significant step toward sustainable thermal energy optimization in industrial settings.

2

Eco-Friendly, On-Demand Gas Generation

generated on-site and on-demand from distilled or RO water using electricity. This eliminates the need for external gas storage or transportation, significantly reducing operational risks and carbon footprint.

3

Dual Environmental Benefit

Unlike conventional methods, this technology delivers a dual advantage: it reduces biomass fuel consumption and lowers emissions simultaneously. This supports direct compliance with stringent environmental regulations and corporate sustainability goals.

4

Cost-Effective

Designed to be samlessly retrofitted tho existing biomass soilers, the system requires minimal odifications, making it a cost-efficient alternative to full stem replacements or upgrades. 5

Scalable and Modular Architecture

calable nature of the IHO system enables flexible deployment cross a wide range of poiler capacities and industrial sectors, enhancing its versatility and return on investment.

Thank You

Driving Sustainability Through Innovation

